Microwave dielectric properties of B₂O₃ doped LaAlO₃ ceramics at low sintering temperature

CHENG-SHING HSU, CHENG-LIANG HUANG, KUO-HAU CHIANG Department of Electrical Engineering, National Cheng Kung University, #1 University Rd., Tainan, Taiwan 70101, Republic of China E-mail: huangcl@mail.ncku.edu.tw

The microwave dielectric properties and the microstructures of LaAlO₃ ceramics with B₂O₃ additions (0.25–1 wt%) prepared with conventional solid-state route have been investigated. Doping with B₂O₃ (up to 0.5 wt%) can effectively promote the densification of LaAlO₃ ceramics. It is found that LaAlO₃ ceramics can be sintered at 1400°C due to the liquid phase effect of B₂O₃ addition. The $Q \times f$ value as well as the dielectric constant decreases at higher B₂O₃ doping level (1 wt%) due to the increase of boundary phases. At 1460°C, LaAlO₃ ceramics with 0.5 wt% B₂O₃ addition possesses a dielectric constant (ε_r) of 22.9, a $Q \times f$ value of 44700 (at 9 GHz) and a temperature coefficients of resonant frequency (τ_f) of -36 ppm/°C. The B₂O₃-doped LaAlO₃ ceramics can find applications in microwave devices requiring low sintering temperature. © *2003 Kluwer Academic Publishers*

1. Introduction

Recently, many researchers have been focusing on developing dielectric materials with high quality factor $(Q \times f)$, high dielectric constant (ε_r) and zero temperature coefficient of resonant frequency (τ_f) for the use of dielectric resonator and microwave device substrate. High dielectric constant material can effectively reduce the size of resonators since that the wavelength (λ) in dielectrics is inversely proportional to $\sqrt{\varepsilon_r}$ of the wavelength (λ_o) in vacuum $(\lambda = \lambda_o / \sqrt{\varepsilon_r})$. The inverse of the dielectric loss ($Q = 1/\tan \delta$) is required to be high for achieving prominent frequency selectivity and stability in microwave transmitter components and small temperature coefficient of the resonant frequency is to ensure the stability of the microwave components at different working temperature. Several compounds such as (Zr, Sn)TiO₄, Ba(Mg_{1/3}Ta_{1/3})O₃ and $(Mg, Ca)TiO_3$ have therefore been developed [1–3]. Rare-earth aluminates LaAlO₃, has been widely used as substrate for superconducting microwave devices since it provides a high quality factor, excellent lattice matching and a good matching for thermal expansion. A phase transition of LaAlO₃ occurs at ~800 K from the high temperature cubic phase (space group Pm3m) to the rhombohedral phase (space group R3c) [4]. It possesses suitable microwave dielectric properties ($\varepsilon_r \sim 23$, $Q \times f \sim 65000$ GHz, $\tau_f \sim -44$ ppm/°C) [5] for applications in dielectric resonators. However, it also requires high sintering temperatures (1550-1650°C). The crystal structure of LaAlO₃ exhibits rhombohedral symmetry.

Chemical processing and small particle sizes of the starting materials are generally advantageous to reduce the sintering temperature of dielectric materials [6–8]. However, they required a flexible procedure not only

expansive but time consuming in the fabrication of dielectric resonator. In this paper, B_2O_3 was selected as a sintering aid in LaAlO₃ material since the liquid phase sintering by adding glass or other low melting point material can effectively lower the sintering temperature of ceramics [7]. Moreover, the microwave dielectric properties of dielectric resonators could be affected due to the development of a particular microstructure linked to the reaction between host material and addition or the sintering with a liquid phase. The crystalline phases, the microstructures and the microwave dielectric properties of B_2O_3 -doped LaAlO₃ ceramics were investigated.

2. Experimental

Samples of LaAlO₃ were synthesized by conventional solid state method. The starting materials were mixed according to a stoichiometric ratio. A small amount of B_2O_3 (0.25–1 wt%) was added as a sintering aid. High purity oxide powders (>99.9%) La₂O₃, Al₂O₃ and B₂O₃ were weighted and mixed for 24 h with distilled water. The mixture was dried at 100°C and thoroughly milled before it was calcined at 1100°C for 2 h. The calcined powder was ground and sieved through 100-mesh screen. Phase formation of LaAlO₃ was confirmed using X-ray diffraction. The fine powder together with the organic binder was pressed into pellets with dimensions of 11 mm in diameter and 5 mm in thickness. These pellets were sintered at temperatures of 1340–1460°C for 2 h in air. The heating rate and the cooling rate were both set at 10°C/min.

The powder and bulk X-ray diffraction (XRD, Rigaku D/Max III. V) spectra were collected using Cu K α radiation (at 30 Kv and 20 mA) and a graphite monochromator in the 2θ range of 20° to 60° . The

microstructural observations and the analysis of sintered surface were performed by a scanning electron microscopy (SEM, Philips XL-40FEG).

The bulk relative densities of the sintered pellets were measured by the Archimedes method. The dielectric constant (ε_r) and the quality factor values (Q) at microwave frequencies were measured using the Hakki-Coleman [9] dielectric resonator method as modified and improved by Courtney [10]. The dielectric resonator was positioned between two brass plates. A system combined with a HP8757D network analyzer and a HP8350B sweep oscillator was employed in the measurement. Identical technique was applied in measuring the temperature coefficient of resonant frequency (τ_f). The test set was placed over a thermostat in the temperature range from +25°C to +80°C. The τ_f value (ppm/°C) can be calculated by noting the change in resonant frequency (Δf),

$$\tau f = \frac{f_2 - f_1}{f_1 (T_2 - T_1)} \tag{1}$$

where f_1 and f_2 represent the resonant frequencies at T_1 and T_2 , respectively.

3. Results and discussion

Fig. 1 shows the X-ray diffraction patterns of 0.25 wt%B₂O₃-doped LaAlO₃ ceramics at different sintering temperatures (1340–1460°C). All of the XRD profiles of the ceramics samples can be indexed by pseudocubic unit cell of the perovskite structure. The X-ray diffraction patterns of the LaAlO₃ ceramics have not significant change with 0.25 wt% B₂O₃ addition at sintering temperatures 1340–1460°C. Second phase was not observed by XRD at the level of 0.25 wt% B₂O₃ addition.

The X-ray diffraction patterns of LaAlO₃ ceramics with different amounts of B_2O_3 additions sintered at 1460°C are illustrated in Fig. 2. Identical XRD patterns were observed for the ceramics regardless the amount of B_2O_3 additions.

The SEM photographs of B_2O_3 -doped LaAlO₃ at sintering temperatures of 1340–1460°C are shown in

Figure 1 X-ray diffraction patterns of 0.25 wt% B₂O₃-doped LaAlO₃ ceramics at different sintering temperatures.

Figure 2 X-ray diffraction patterns of LaAlO₃ ceramics with different amount of B_2O_3 addition sintered at 1460°C.

Fig. 3. The grain size increased with the increase of sintering temperature as well as amount of B_2O_3 addition due to the liquid phase effect. With 0.25–0.5 wt% B_2O_3 additions, porous specimens were observed for LaAlO₃ ceramics sintered at temperatures 1340–1400°C. Dense samples can be obtained at sintering temperatures above 1430°C. However, the grain boundary phases were pronounced product with 1 wt% B_2O_3 addition. It may directly affect the microwave dielectric properties of the ceramic samples.

The relative density of the B₂O₃-doped LaAlO₃ ceramics at different sintering temperatures is shown in Fig. 4. It indicated that relative densities of 91.4%–99% were obtained for B₂O₃-doped LaAlO₃ ceramics at sintering temperatures from 1340° C to 1460° C. The relative density increased with increasing sintering temperature due to enlarged grain size as observed in Fig. 3, and was also affected by the B₂O₃ addition. Higher B₂O₃ doping level formed more liquid phase, which would enhance the densification resulted in a higher ceramic relative density. Moreover, the relative density also related to the porosity and increased with the decrease of porosity. As the sintering temperature increased, the relative density slightly increased and reached 98% at 1460° C with 0.5 wt% B₂O₃ addition.

Fig. 5 demonstrates the dielectric constants of LaAlO₃ ceramics with different amount of B₂O₃ additions as functions of their sintering temperatures. The relationships between ε_r values and sintering temperatures revealed the same trend with those between relative densities and sintering temperatures since higher relative density means lower porosity. The dielectric constants slightly increased with increasing sintering temperature. The increase in the ε_r value could be explained owing to higher relative densities. However, a dramatic degradation in the ε_r value appeared at 1 wt% B₂O₃ doping level. It was attributed to the low dielectric constant of the liquid phase. With 0.5 wt% B₂O₃ addition, an ε_r value of 22.9 was obtained for LaAlO₃ ceramics sintered at 1460°C.

Fig. 6 shows the $Q \times f$ values of LaAlO₃ ceramics with various B₂O₃ additions at different sintering temperatures. At low level of B₂O₃ additions (0.25–1 wt%), the $Q \times f$ values of LaAlO₃ ceramics increased with increasing sintering temperature.

However, higher $Q \times f$ values were observed at 0.5 wt% B₂O₃ doping level. With increasing B₂O₃ content, the $Q \times f$ value increased to a maximum value of 44700 (GHz) at 0.5 wt% and thereafter decreased. The microwave dielectric loss is mainly caused

not only by the lattice vibrational modes, but also by the pores and the secondary phases. Smaller grain size as well as higher porosity degraded the $Q \times f$ values of the as-sintered samples with 0.25 wt% B₂O₃ addition. Relative density also plays an important role

1340°C

1430°C

1370°C

1460°C

Figure 3 SEM photographs of LaAlO₃ ceramics with (a) 0.25 wt% (b) 0.5 wt% and (c) 1 wt% B_2O_3 additions at different sintering temperatures. (Continued)

(a)

1340°C

1430°C

1370°C

1460°C

1400°C

(b)

Figure 3 (Continued).

in controlling the dielectric loss and has been shown for other microwave dielectric materials. With $0.5 \ wt\%$ B_2O_3 addition, the $Q \times f$ value increased from 21000 to 44700 (GHz) as the sintering temperature increased from 1340 to 1460°C for 2 h. It was consistent with the

variation of relative density. Furthermore, higher B2O3 content would degrade the $Q \times f$ value of LaAlO₃ ceramics since the grain boundary phases were pronounced product at higher sintering temperatures as observed in Fig. 3. That would explain the decrease in

1340°C

1430°C

1370°C

1460°C

1400°C

(c)

Figure 3 (Continued).

 $Q \times f$ values for LaAlO₃ ceramics with 1 wt% B₂O₃ addition. The quality factors of B₂O₃-doped LaAlO₃ ceramics were relatively lower than that of pure LaAlO₃ ceramics due to the grain boundary phase.

The temperature coefficients of resonant frequency (τ_f) of B₂O₃-doped LaAlO₃ ceramics at different sin-

tering temperatures are illustrated in Fig. 7. The temperature coefficient of resonant frequency is well known related to the composition, the additives and the second phase of the material. The τ_f value, as presented, was a function of the B₂O₃ content. It varied from average -26 to -35 ppm/°C as the amount of B₂O₃

Figure 4 Dependence of sintering temperature of $LaAlO_3$ ceramics on relative density with various B_2O_3 additions.

Figure 5 Dependence of sintering temperature of LaAlO₃ ceramics on dielectric constant with various B_2O_3 additions.

Figure 6 Dependence of sintering temperature of LaAlO₃ ceramics on quality factor ($Q \times f$) with various B₂O₃ additions.

addition increased from 0.25 to 0.5–1 wt%. Significant change was not observed in the τ_f value with fixed B₂O₃ addition at different sintering temperatures. It implies that the τ_f value was not sensitive to the sintering temperature.

Figure 7 Dependence of sintering temperature of LaAlO₃ ceramics on τ_f value with various B₂O₃ Additions.

4. Conclusion

The dielectric properties of B₂O₃-doped LaAlO₃ ceramics were investigated. LaAlO₃ ceramics exhibited perovskite structure with pseudo-cubic unit cell. A tremendous sintering temperature reduction (100–200°C) can be achieved by adding B₂O₃ to the LaAlO₃ ceramics. With 0.5 wt% B₂O₃ addition, a dielectric constant of 22.9, a $Q \times f$ value of 44700 (GHz) and a τ_f value of -36 ppm/°C were obtained for LaAlO₃ ceramics at 1460°C for 2 h. The decrease in $Q \times f$ value at higher B₂O₃ addition (1 wt%) was owing to that the grain boundary phases were pronounced product.

Acknowledgement

This work was supported by the National Science Council of the Republic of China under grant NSC90-2213-E-006-061.

References

- 1. S. NOMURA, K. TOYAMA and K. KANETA, *Jpn. J. Appl. Phys.* **21** (1982) L624.
- 2. G. WOLFRAM and H. E. GOBEL, *Mater. Res. Bull.* **16** (1981) 1455.
- 3. I. BURN, U.S. patent 4,845,062 (1989).
- 4. PAI-HSUAN SUN, TETSURO NAKAMURA, YUE JIN SHAN, YOSHIYUKI INAGUMA and MITSURU ITOH, *Jpn. J. Appl. Phys.* **37** (1998) 5625.
- 5. SEO-YONG CHO, IN-TAE KIM and KUG-SUN HONG, J. Mater. Res. 14 (1999) 114.
- T. KAKADA, S. F. WANG, SYOSHIKAWA, S. T. JANG and R. E. NEWNHAM, J. Amer. Ceram. Soc. 77 (1994) 1909.
- 7. S. I. HIRNO, TAKASHI, HAYASHI and A. HATTORI, *ibid.* **74** (1991) 1320.
- 8. V. TOLMER and G. DESQUARDIN, *ibid.* 80 (1997) 1981.
- 9. B. W. HAKKI and P. D. COLEMAN, *IEEE Trans. Microwave Theory & Tech.* 8 (1960) 402.
- 10. W. E. COURTNEY, *ibid.* 18 (1970) 476.

Received 25 October 2001 and accepted 3 April 2003